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The Random Parking Problem 
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A new approach to the random parking problem is given. 
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1. I N T R O D U C T I O N  

Some statistical problems in physics come naturally in twin versions--one 
equilibrium version and one irreversible version. 

A first example is self-avoiding random walks on a lattice. The 
designation "walk" suggests a sequentially executed step-by-step process so 
that the walker each time makes an unbiased choice between neighbor sites 
not visited before. In this "genuine self-avoiding walk ''~1~ (also called ~z) 
"kinetic growing walk") two walks of the same total length may have 
different probabilities of realization. More often, however, the equilibrium 
version is considered, in which all self-avoiding configurations are assigned 
a weight that merely depends upon the walk length. 

Random configurations of hard spheres constitute a second example. (3) 
These configurations can be generated by random sequential addition of 
spheres to the available volume. The twin version to this irreversible proce- 
dure is generation of thermal equilibrium configurations. At a given density 
the two types of configurations are different. The clearest indication of this 
is that the first process stops at a jamming density less than the density at 
close packing. 

The one-dimensional version of the irreversible hard-sphere problem 
has been called the random parking problem. Cars, all of length l, are 
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parked randomly along a road. The resulting jamming density, relative to 
the maximum density I-1, is given by R6nyi's number 

f 5  ( fo 1 - e  ) R =  dxexp - 2  dy -Y (1) 
Y 

which numerically corresponds to a coverage of 74.76 %. 
The purpose of the present paper is to present a new derivation of R. 

The final result (1) suggests that the problem is complicated, and R6nyi's 
derivation, (4) which involves a difference-differential equation, is not 
straightforward. As will be clear below, however, the problem can be 
solved in a fairly elementary way. As an additional benefit, we obtain the 
complete time evolution of the density (s) without extra work. 

2. F O R M U L A T I O N  

Let the length of a car be L Then the maximum density is 

/9ma x = l - 1. (2) 

Adhering to the Mark Kac dictum "Be wise, discretize!," I allow only 
discretized parking, so that the center of a car can only be positioned at the 
sites of a regular one-dimensional lattice, with a lattice spacing a given by 

a=l/(r+l)  (integer r) (3) 

Thereby parking is prohibited at any one of the r neighboring sites on 
either side of a parked car. As a final step, I let the integer r --* ~ ,  thereby 
reaching the continuum situation. 

To specify the problem, assume that the lattice is empty at time t = 0, 
and that there is a constant probability k dt for an available site to become 
occupied by a car during the time interval dt. "Available" implies that no 
car is already parked on the site itself nor on the r nearest-neighbor sites 
on both sides. Note in passing that for one single isolated site, the 
probability po(t) of finding it unoccupied would decay exponentially, 

po(t)=e kt (4) 

At time t we want to determine p(t), the average fraction of occupied 
sites, or, equivalently, the probability that an arbitrarily selected site is 
occupied. The coverage R(t) is the ratio between the corresponding density 
p(t)/a and the maximum density Pmax : 

R(t) = p(t)/apmax = (r + 1) p(t) (5) 
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Finally, Renyi's number (1) is the asymptotic value of the continuum 
coverage: 

R =  lim lim R(t)  
t ~ o o  r ~ o O  

We must scale down the rate constant k by a factor r, 

k = c/r (6) 

in order to have a sensible time evolution in the r ~  ~ limit (since 
there are r parking sites per car length). Here c is an absolute constant 
independent of r. 

3. T H E  F ILLING P R O C E S S  

Consider an arbitrary site i. The probability that it is occupied at time 
t is denoted by p(t),  which depends upon time because there is a small 
probability that the site changes status from unoccupied to occupied during 
the time interval (t, t + dt). Such a change can only occur if the site itself 
and the r neighboring sites on both sides are all unoccupied at time t. The 
probability of this "availability" is 

P,(t) po(t) e,(t) (7) 

where Pr(t) is the probability that the r terminal units of a semi-infinite 
lattice, initially empty, are all unoccupied at time t. The product form (7) 
arises from the fact that the three parts of the lattice represented in (7); the 
site i and the left-hand and the right-hand semi-infinite lattices, are all inde- 
pendent (occupied sites influence neighbors only within the the range r) 
(see Fig. 1). 

, -0 ,  O- 0 " ~ ' 0 - ' * - - ~ -  0 "0  O- (:>-- 

" - - 0  '0  .... O- 0 0 ~ 0 (),.-- 
,~ p �9 �9 

Fig. 1. The three independent parts of configurations with a string of 2r+ 1 unoccupied 
sites. 



868 Hemmer 

Thus, 

d 
dt p(t)=kPr(t ) po(t) Pr(t) (8) 

o r  

p(t) = k dt'po(t')[Pr(t')] 2 (9) 

It remains to determine Pn(t), the probability that the n terminal sites 
of a semi-infinite lattice are all unoccupied at time t. 

This probability can decrease during the time interval (t, t+dt) 
because any one of the r terminal sites may become occupied. Note that the 
ultimate site can be occupied during dt only if the r + 1 terminal sites are 
unoccupied at time t, the probability of which is Pr+l(t). Similarly the 
penultimate site can be occupied during dt only if the r + 2 terminal sites 
are unoccupied at time t, etc. Thus, 

d 
-fit P~(t) = -kiPs+ l(t) + P~+2(t) + --" + P2r(t)] (10) 

We use again independence of the uninfluenced unoccupied sites (beyond 
the range r), i.e., 

er +m(t) = P~(t)[po(t) ] '~ (11) 

Inserting this into (10), we obtain 

Pr(t) = -kPr(t) i [po(t)] m (t2) 
dt m = l  

Summation of the geometric series and integration yields 

Pr( t )=exp{- f~ '  1 -  [P~ po(t') dt'} (13) 

Insertion of Pr(t) into Eq. (9) yields the average occupation at time t. The 
coverage (5) equals 

fi R(t )=(r+l)k  dt'po(t') 

{ f] c 1-[p~ } xexp - 2  i ~  po(t")dt" (14) 
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Introducing the new integration variables 

y=r[1-po(t")]=r(1-e kc,) 

and 

x = r [ 1 - - p o ( t ' ) ]  = r ( 1 - - e  -kc) 
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(15) 

(16) 

as well as k = c/r [Eq. (6)], we find that the coverage (14) takes the form 

R(t) = r ~- 1 ~rl-1 exp( ct/r)] dx 

r ~0 

xexp - 2  dy 1-(1-y/r)r (17) 
Y 

The continuum limit r ~ ~ is now straightforward and yields 

(18) R(t)= f~' dx exp {-2 fo dy (1-e-Y)/y} 

which clearly approaches the R6nyi number (1) in the t--* ~ limit! 

4. CONCLUDING REMARKS 

The discrete version (17), which in the simplest case r =  1 takes the 
form 

R(t) = 1 - exp[ - 2 ( 1  - e-Ct)] (19) 

may be of interest for discrete systems. Polymer reactions with nearest- 
neighbor inhibitory effects (6) constitutes an example. 

For  the problem at hand the existence of a simple solution may merely 
be of pedagogical value. However, a simplified approach often provides a 
key to the solution of more complicated problems. For  certain complex 
polymer reaction problems an approach of the present type is essential, but 
it would lead us too far astray to go into details. 
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